

Cubic Lattices: densities

(a = lattice parameter)

nearest neighbors

- Atomic densities:
 - \triangleright SC: $\rho_{atm} = 1/a^3$
 - **>** BCC: $\rho_{atm} = 2/a^3$
 - ightharpoonup FCC: $\rho_{atm} = 4/a^3$

> SC: $\rho = 1 M/a^3$

 \triangleright BCC: $\rho = 2 M/a^3$

 \triangleright FCC: $\rho = 4 M/a^3$

Mass densities:

Atomic radii (close packing):

12

Coordination number:

> SC:

> BCC:

> FCC:

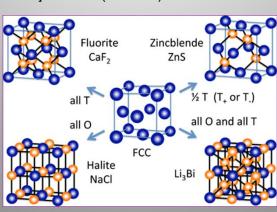
- > SC: r = a/2
- > BCC: $r = \sqrt{3} a/4$
- ightharpoonup FCC: $r = \sqrt{2} a/2$

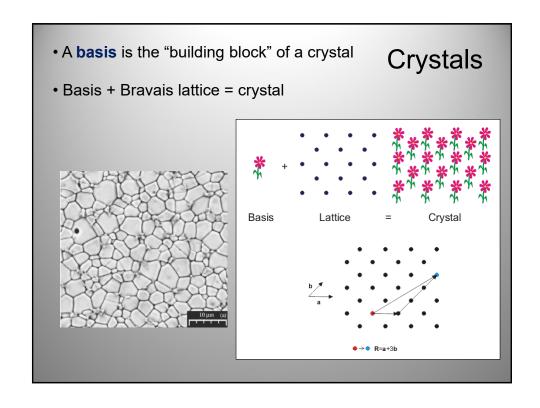
Packing fraction: SC = 0.52, BCC = 0.68, FCC = 0.74 [pf = (V of atoms)/(total V)]

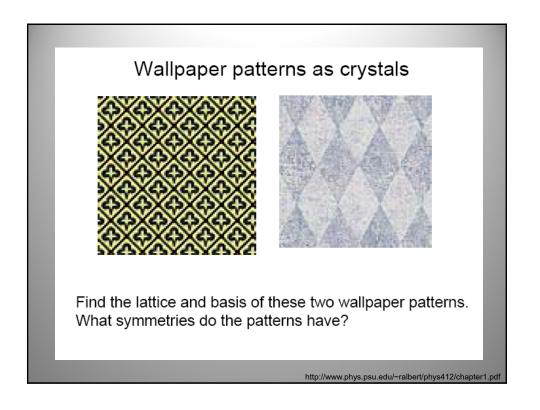
the lager to delite all files desir les en les en les electrics De voice les en 00000 les 1

Some variations on the cubic lattices:

- NaCl structure (FCC-like)
- CaCl structure (BCC-like)
- ZnS [zinc blende] structure (FCC-like)
- · Diamond (FCC-like)
- CaF₂ [fluorite] structure (FCC-like)

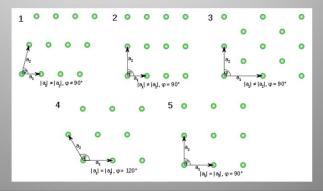






Bravais Lattices

- An infinite array of points, determined by lattice vectors, $\vec{R} = n_1 \vec{a}_1 + n_2 \vec{a}_2 + n_3 \vec{a}_3$ such that all n_i are integers and all the a_i are primitive vectors
- In 2-D

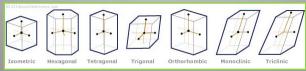


• # possible different shapes of unit cell?

We must be able to fill all space by translational symmetry, with no gaps.

We get 7 crystal systems:

System	Lattice Parameters	
Cubic/Isometric	a = b = c	$\alpha = \beta = \gamma = 90^{\circ}$
Tetragonal	$a = b \neq c$	$\alpha = \beta = \gamma = 90^{\circ}$
Orthorhombic	$a \neq b \neq c$	$\alpha = \beta = \gamma = 90^{\circ}$
Rhombohedral/Trigonal	a = b = c	$\alpha = \beta = \gamma \neq 90^{\circ}$
Hexagonal	$a = b \neq c$	$\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$
Monoclinic	$a \neq b \neq c$	$\alpha = \beta = 90^{\circ}, \gamma \neq 90^{\circ}$
Triclinic	$a \neq b \neq c$	$\alpha \neq \beta \neq \gamma$



a, b, c represent lengths of lattice vectors

 α , β , γ represent angles between lattice vectors

Bravais Lattices

Every lattice point must have the same environment. These don't have to be just at the corner of the cell. Variations possible on the seven crystal systems:

Symbol	Name	Lattice points / cell
Р	primitive ('corners only')	1
1	body-centered ('corner + cube-centre')	2
F	face-centred ('centre of all faces + corner')	4
С	base-centred ('centre of one face + corners')	2

